粗硬黑大欧美aaaa片视频_国产精品视频区1_日韩综合精品视频_天堂网www在线资源_日韩精品中文字幕视频_无码爽大片日本无码AAA特黄

食品伙伴網(wǎng)服務(wù)號(hào)

微生物名人堂-Max Theiler

放大字體  縮小字體 發(fā)布日期:2010-05-14
核心提示:Max Theiler – BiographyMax Theiler was born on January 30, 1899 , in Pretoria , South Africa , one of the four
Max Theiler – Biography

Max Theiler was born on January 30, 1899 , in Pretoria , South Africa , one of the four children of Sir Arnold and Emma (née Jegge) Theiler. His father was a well-known veterinary scientist. He attended local schools except for one year in Basle , Switzerland (his father was of Swiss origin), then went on to Rhodes University College, Grahamstown and the University of Capetown Medical School (1916-1918). He then went to England to study at St. Thomas' Hospital and at the London School of Tropical Medicine, receiving his medical degree in 1922. In the same year he became a Licentiate of the Royal College of Physicians and a Member of the Royal College of Surgeons.
In 1922 he joined the Department of Tropical Medicine at the Harvard Medical School,
Boston , Massachusetts , first as an assistant, then being appointed instructor. In 1930 he joined the staff of the International Health Division of the Rockefeller Foundation, becoming, in 1951, Director of Laboratories of the Rockefeller Foundation's Division of Medicine and Public Health, New York .
His early work, at Harvard, dealt with amoebic dysentery and rat bite fever. He also worked on the problem of yellow fever, a subject in which he had become interested whilst still in
London . This was to become his major interest. By 1927 he and his colleagues had proved that the cause of yellow fever was not a bacterium but a filterable virus. He also demonstrated that the disease could be readily transmitted to mice. Previously, laboratory work on this topic had been done using monkeys as experimental animals; the use of mice enabled the cost of such research to be greatly reduced. In 1930, when he joined the Rockefeller Foundation, that body was engaged in a broad attack on the problem of yellow fever. Here, Theiler and his colleagues worked on vaccines against the disease and eventually developed a safe, standardized vaccine, 17D, one advantage of which was its ready adaptability to mass production.
His other work for the Institute has been connected with the causes and immunology of certain disorders which include Weil's disease. He has also been engaged in research on dengue fever and Japanese encephalitis. The problem of poliomyelitis has been of great interest to him and he discovered an apparently identical disorder in laboratory mice which is now sometimes called Theiler's disease (encephalomyelitis).
Dr. Theiler has been a contributor to two books, Viral and Rickettsial Infections of Man (1948) and Yellow Fever (1951). He has also written numerous papers in The American Journal of Tropical Medicine and Annals of Tropical Medicine and Parasitology.
Honours awarded to him include the Chalmer's Medal of the Royal Society of Tropical Medicine and Hygiene (
London , 1939), the Flattery Medal (Harvard, 1945), and the Lasker Award of the Lasker Foundation (1949).
He married Lillian Graham in 1928. They have one daughter.

Max Theiler – Nobel Lecture

Nobel Lecture, December 11, 1951

The development of vaccines against yellow fever

The study of yellow fever may be divided into two periods. The first one occurred at the turn of the century when Walter Reed and his co-workers showed by the use of human volunteers that the causative agent of this disease was a filterable virus and that it was transmitted by the bite of the common urban mosquito, subsequently named Aedes aegypti. The second period began in 1928, when Stokes, Bauer, and Hudson found that the common Indian rhesus monkey was susceptible to yellow fever, thus making available an animal that could be used in the laboratory. The first strain of yellow fever established by these workers is known as the Asibi strain, named after the patient from whom it was isolated. It has been used extensively in yellow fever work and, as will be shown later, was the parent strain from which the 17D vaccine was eventually produced.

It was shortly after monkeys were found susceptible that, in searching for a less expensive and more readily available experimental animal, I found that the common white mouse was susceptible to the virus if inoculated by the intracerebral route. This method of inoculation was chosen as it was generally conceded that the common laboratory animals could not become infected if inoculated by the usual routes. The strain of virus with which this work was done was isolated by Mathis, Sellards, and Laigret in 1928 in Dakar , French West Africa , is known as the French strain, and, like the Asibi, is highly virulent for rhesus monkeys. The disease in mice was an encephalomyelitis with no involvement of the visceral organs, in contrast to that induced in man and monkey, in which the liver, kidney, and heart are involved. By serial passage in mice, the pathogenic action of the virus was altered in two respects. Firstly, the incubation period became progressively shortened until, after many passages, it became constant, or, to use the term introduced by Pasteur in his work on rabies, it became fixed. Now the incubation period in mice is used as a measure of the degree of neurotropism for these animals. Secondly, with the increase of virulence for the nervous system of mice, there was also evidence of a progressive loss of virulence for rhesus monkeys when inoculated parenterally. This loss of virulence for monkeys first suggested the possibility of the use of an attenuated active virus for the immunization of man. The finding that by mouse brain passage the virulence of yellow fever virus could be altered led me to undertake extensive studies on the variations induced in the virus by different laboratory procedures, which became my main scientific activity for several years. The results of only those experiments which are pertinent to the development of vaccines will be discussed here.

The finding of the susceptibility of mice and its attenuation for monkeys was rapidly confirmed by others. It was shown that many, if not all, strains of yellow fever are pathogenic for mice, and this animal came into widespread use in all yellow fever work. The pathogenicity of unmodified strains for mice varied greatly - ranging from the highly neurotropic Asibi virus to the relatively avirulent French strain. Both of these, as noted before, are highly pathogenic for rhesus monkeys and almost invariably produce a fatal disease when inoculated parenterally. With most strains it was shown that the mouse could be used for the quantitative estimation of virus. This proved of great value, for as strains of virus avirulent for monkeys were developed, the mouse was the only animal by which the presence and amount could be readily determined.

In my early work it was clearly shown that mice could be used for determining the presence of yellow fever antibodies in sera. Standardized tests for antibodies by the use of these animals were soon evolved by Sawyer and Lloyd, and myself. These have proved of great value in the study of the epidemiology and distribution of yellow fever and eventually in testing the efficacy of different vaccines as these became available.

In considering the possibility of using the modified mouse-adapted virus for human immunization, although it was clear that it had become markedly attenuated for monkeys when inoculated by parenteral routes, the discovery was made by Sellards, and Lloyd and Penna that the virus had acquired marked neurotropic affinities for these animals and produced a fatal encephalitis when inoculated into their brains. There was thus the possibility that the virus, if used as a vaccine, although it had lost the power of inducing a serious visceral disease, might induce an infection of the nervous system. Reasons for this possibility were clearly shown in experiments in monkeys. When these animals were inoculated subcutaneously with the mouse-adapted virus, they usually remained well, and developed a solid immunity to a subsequent inoculation of a highly virulent strain. The inoculation of the adapted virus was shown to produce a mild systemic infection with the production of specific antibodies; in fact, it acted like a vaccine. In an occasional animal, however, after the systemic infection had run its course, an encephalitis developed which was invariably fatal. This encephalitis was due to the mouse-adapted yellow fever virus.

In the development of vaccines for human beings, using my mouse-adapted virus, two paths were followed. In the first, used chiefly by French workers, virus alone was inoculated; and in the second, used by American and English workers, virus and human immune serum were inoculated simultaneously. The first immunizations of humans using mouse-adapted neurotropic virus alone were reported by Sellard and Laigret (1932). Several severe reactions were reported, and the method was modified by Laigret, who introduced the procedure of giving three inoculations at twenty-day intervals of virus which had been exposed for four days, two days, and one day, respectively, to a temperature of 20?C. That this method consisted essentially of the inoculation of three graded doses of fully virulent neurotropic virus and not of attenuated virus, as thought by Laigret, was shown by Whitman and myself. These early vaccines, using the neuroadapted virus alone, though producing a satisfactory immunity, were, nevertheless, not considered entirely safe because of the serious reactions associated in some cases with signs of involvement of the central nervous system. Further investigations by French workers, however, finally led to a safe and efficient method of vaccination, which is at present used on a very large scale in the French territories in Africa . This method introduced by Peltier and his co-workers (1939) consists of applying the mouse-adapted virus to the scarified skin. In retrospect, it seems probable that the early severe reactions were due to the use of a virus which, although it had undergone a considerable degree of modification, was nevertheless not sufficiently attenuated for safe use in man. At the present time this method of vaccination is usually combined with vaccinia virus. A mixture of both viruses is applied to the scarified skin, and the individual is thus immunized to the two agents at the same time. Many millions of people have been immunized thus without any very serious reactions having been reported.

The other early method of vaccination using the mouse-adapted virus consisted in the simultaneous inoculation of the virus and human immune serum. This method was based on the observation that an active immunity was readily induced in monkeys by the simultaneous inoculation of highly virulent yellow fever virus and immune serum. After extensive experiments in monkeys, using the mouse-adapted virus and immune serum, Sawyer, Kitchen, and Lloyd introduced this method for the immunization of persons working with yellow fever virus, thus bringing to an end the long series of laboratory infections that had taken such a heavy toll. Though the reactions to the vaccine were, in general, very mild, it should be noted that one very serious reaction with signs of involvement of the brain occurred like those reported by the French workers following the use of the virus alone. This method, however, had a very serious disadvantage in that it could not be used on an extensive scale because of the large quantities of human immune serum required.

Investigations were accordingly undertaken - on the one hand to find a substitute for the human immune serum and on the other hand to develop a more attenuated strain of virus. The first was readily achieved, and various workers succeeded in producing high-titer horse, rabbit, goat, and monkey immune sera. Experiments in monkeys by Whitman and myself showed that by the use of a hyperimmune serum the quantity used for human vaccination could be considerably reduced. Of the hyperimmune sera, those produced in monkeys by Smith and myself proved the most satisfactory and were used fairly extensively for some time. Reactions were few and mild and antibody production satisfactory. The main advantage, however, lay merely in the fact that only a few cubic centimeters were necessary for each individual vaccinated, whereas previously from 35 to 40 cc. of human serum were needed. The method was still cumbersome and entirely impractical for large-scale immunization. This had become an urgent problem as the epidemiological entity known as "jungle yellow fever" had been discovered. Classical urban yellow fever, transmitted by the common yellow fever mosquito, Aedes aegypti, can be readily controlled by antimosquito measures. Jungle yellow fever, on the other hand, occurs in the country districts, sometimes in vast epidemics, and in the absence of Aedes aegypti. The only rational method of protection of the exposed population called for large-scale vaccination.

In further attempts to attenuate yellow fever virus, the method of tissue culture was investigated. The cultivation of the French neurotropic virus was readily achieved by Haagen and myself and later by Lloyd, Ricci, and myself by the use of chick embryo tissue. Extensive experiments for several years with this virus strain in a variety of culture media did not lead to any further attenuation. In attempts to cultivate an unadapted strain of virus, great difficulty was encountered, but this was finally achieved by Lloyd, Ricci, and myself by using a fluid medium, the tissue component of which consisted of minced mouse-embryo tissue. Prolonged cultivation of the Asibi virus in this medium induced a marked change in its virulence; in fact, it became so attenuated that when inoculated parenterally into monkeys it no longer caused death. What was considered of equal significance was that the culture virus did not become more neurotropic; in fact, it was less neurotropic for experimental animals than the mouse-adapted French virus then in use for human vaccination. However, it was not considered sufficiently attenuated in both these attributes to be used for human immunization alone without the simultaneous inoculation of immune serum. This cultured virus, known as 17E, was consequently substituted by Lloyd for the French neurotropic virus. This method proved satisfactory.

In the culture experiments, attempts were made to propagate the virus in as wide a variety of tissues as possible, in the hope that in one the desired attenuation of both the viscerotropic as well as the neurotropic affinities would occur. While it was plain that the viscerotropic affinity could be readily reduced either by mouse brain passage or by prolonged tissue culture, what was particularly desired was a method of reducing the neurotropism. On the theory that since the virus becomes more neurotropic when maintained for a long time in brain tissue (as by passage in mice) it might lose this affinity if cultivated in the absence of nerve tissue, experiments were undertaken to determine the influence of nervous tissue on the prolonged culture of the virus. For this purpose, three parallel series of tissue cultures were maintained, all containing chick embryo tissue but differing in the amount of nervous tissue. In the first, the tissue component consisted of minced whole-chick embryo; in the second, chick embryo brain only was used; whereas the third series contained minimal amounts of nervous tissue consisting of minced chick embryo from which the brain and spinal cord had been cut away before mincing.

The Asibi virus with which all these culture experiments were undertaken is highly pathogenic, not only for monkeys by parenteral inoculation but also for mice by intracerebral inoculation; that is, its viscerotropic as well as its neurotropic affinities are highly developed. These properties made it suitable for culture experiments as any change induced could be readily determined. The culture experiments to date had shown that the viscerotropic affinity of the Asibi strain could be readily reduced without at the same time producing a change in the neurotropic affinity. Since strains of yellow fever virus as they occur in nature vary enormously in these two attributes, it was reasoned that if strains possessing less marked affinities were cultivated, then possibly the desired attenuation would occur. Numerous attempts to cultivate strains of yellow fever virus with low viscerotropic or neurotropic affinities at first ended in failure. However, success was eventually achieved by Smith and myself. Experiments had shown that when embryo mice in utero are inoculated with yellow fever, the virus has a predilection for the brain. By the use of mouse embryo brain as the tissue component in the cultures, seven different strains of yellow fever were readily cultivated. Only two of these, the unmodified French strain and the JSS, a strain isolated from a case of jungle yellow fever, were extensively studied. After their establishment in this medium, the possibility of cultivating them in other tissues was investigated. At first these attempts were unsuccessful, but eventually cultures were obtained in a medium containing minced whole-mouse embryo and finally in media containing chick embryo tissue prepared either from whole embryos or from embryos from which the central nervous system had been cut away before mincing. Three parallel series of cultures were maintained for several hundred subcultures of these two strains of virus, the tissue components of the cultures being, respectively, mouse embryo brain, minced whole-chick embryo, and chick embryos from which the central nervous system had been cut away before mincing. We thus had three different yellow fever strains (the Asibi, the unmodified French, and the JSS) of widely divergent tissue affinities running concurrently in several media containing varying amounts of nervous tissue.

Before these new culture experiments had progressed very far, a very marked change in pathogenicity was observed in the Asibi virus grown in the medium, the tissue component of which was chick embryo containing minimal amounts of nervous tissue. This is called the 17D strain. This attenuation consisted in a partial loss of neurotropism for mice and monkeys, as well as a marked loss of viscerotropism for monkeys. Monkeys inoculated intracerebrally developed a mild encephalitis which as a rule was non-fatal. This was the much hoped-for change, as both the strains then in use for human immunization, namely, the French neurotropic virus and the 17E variant of the Asibi virus, cultivated in mouse embryo tissue, invariably produced a fatal encephalitis when inoculated into the brains of rhesus monkeys.

The marked loss of viscerotropism of the 17D culture virus was clearly shown in experiments in monkeys. As a rule monkeys inoculated with the virus by extraneural routes developed no fever or other signs of illness and in their blood only minimal amounts of virus could be demonstrated. Such monkeys were shown to develop specific antibodies and to be solidly immune to the highly virulent Asibi strain.

After extensive experiments in monkeys by Smith and myself, the 17D strain was used for human vaccination without the simultaneous inoculation of immune serum. It was considered that the loss of both the viscerotropic as well as neurotropic affinities as demonstrated in monkeys made this the virus of choice for human vaccination. In a preliminary study we showed that reactions in man were either absent or minimal and that satisfactory antibody response was obtained. Smith, Penna, and Paoliello, in Brazil , made a more thorough and more extensive study of the reaction in man. The results were eminently satisfactory. The 17D virus has been used as a vaccine in many millions of individuals.

In the two parallel series of cultures with the Asibi virus in which whole-chick tissue and chick embryo brain only were used, no such marked attenuation occurred. Both of these viruses, after several hundred subcultures, produced fatal encephalitis in monkeys when inoculated intracerebrally and both produced a rather severe visceral infection. These results suggested that the amount of nervous tissue was the conditioning factor which produced the change, as loss of neurotropism occurred only in a medium containing minimal amounts of nervous tissue. It was considered at the time that these findings were a confirmation of the hypothesis on which the culture experiments had been planned.

Consequently, in order to obtain more information on the role of nervous tissue, I started three new series of tissue cultures. Virus taken from the culture series that had been maintained in chick brain only and virus that had been cultivated in whole-chick embryo were grown in two new series of cultures, the tissue component of which contained minimal amounts of nervous tissue; and, conversely, the 17D virus, which had been grown in a medium containing minimal amounts of nervous tissue, was transferred to a medium containing chick embryo brain only. At the time of the conclusion of the experiment, more than 200 subcultures in the new series had been made. At intervals, monkeys were inoculated intracerebrally to determine the neurotropism of the cultivated virus. The results showed that no modification had occurred. Thus the 17D strain, cultivated for more than 200 subcultures in chick embryo brain, had not become more neurotropic, and the virus at the beginning and the end of the series was essentially the same in pathogenicity. In like manner, the other two strains, which, it will be recalled, produced fatal encephalitis in monkeys at the beginning of these culture experiments, did not lose their neurotropism even though maintained for more than 200 subcultures in a medium containing minimal amounts of nervous tissue. The conclusion was obvious that the relative amounts of nervous tissue present in the media had not produced any demonstrable change.

The reason for the rapid change noticed in the 17D strain, which occurred between the 89th and 114th subcultures, was and still is completely unknown. However, these experiments indicate that once the mutant had occurred, it was relatively stable.

What was apparently a similar mutant was reported subsequently by Penna and Moussatché (1939). These workers maintained the Asibi virus in series in the developing chick embryo and noted a similar marked attenuation. In their experiments a marked loss of neurotropism occurred in spite of the fact that in the developing chick embryo the virus shows a marked affinity for the brain and multiplies readily there.

Our experiments with the Asibi virus in tissue culture may be summarized as follows. In one of the series of cultures, a sudden modification. occurred. The evidence is that this change was not due to the relative absence of nervous tissue in the medium, nor could chick embryo tissue per se be responsible as the change occurred in only one of six series of cultures containing chick embryo tissue.

The results with two other strains of yellow fever, the French and JSS, which were cultivated in media containing varying amounts of nervous tissue are briefly as follow. The French viscerotropic virus was cultured for several hundred subcultures in three different media, the tissue component of which consisted of, respectively, mouse-embryo brain, minced whole-chick embryo, and minced chick-embryo containing minimal amounts of nervous tissue. The results showed that the viscerotropism was rapidly lost, but there was no such extreme attenuation as was observed in the 17D virus. On the contrary, it appeared that an actual increase of neurotropism had taken place in all three parallel cultures, irrespective of the quantity of nervous tissue in the medium.

In the culture experiments with the JSS strain, maintained for over three hundred subcultures in the same media as were used for the French virus, the neurotropism tended to decrease in all three series. However, the least decrease was observed in the virus cultured in the medium containing minimal amounts of nervous tissue. The viscerotropism of the virus grown in the medium containing minced whole-chick tissue became so decreased that on inoculation subcutaneously it failed to produce an infection even when administered in large doses. This is the most extreme case of attenuation so far observed in any yellow fever virus. The loss of infectivity of this highly attenuated strain for monkeys inoculated subcutaneously recalls a somewhat similar, though not so marked, change that occurred in one of the 17D culture series, which became so attenuated for man that it failed in a fair proportion of cases to produce immunity.

In conclusion, we may summarize the culture experiments by stating that any yellow fever virus maintained in tissue culture will become attenuated somewhat in its viscerotropic affinities, irrespective of the tissue used. The neurotropic affinity as a rule does not change. Occasionally, however, for some unknown reason, a mutant appears with marked reduction in both neurotropism as well as viscerotropism. This mutant is comparatively stable, but it too has been observed to undergo change on two occasions. The first time, as reported by Soper and Smith, the cultured virus was found to have become so attenuated that it failed to produce immunity in a fair proportion of persons vaccinated, and the second time, noted by Fox and his co-workers, the virus had regained some neurotropism so that it actually produced encephalitis in a small proportion of persons vaccinated.

In comparing the two vaccines at present in use - viz., the French vaccine and the 17D - it may be stated that both vaccines produce an actual infection and a resulting immunity. The infection produced by the French vaccine is more severe than that produced by the 17D, as manifested both by subjective symptoms as well as by the amount of circulating virus. As a consequence of this relatively severe infection induced by the French vaccine, antibody production is more regular than after the extremely mild infection induced by the 17D vaccine. Only time will tell which of the two is to be preferred.

By the intelligent application of antimosquito measures combined with vaccination, public-health officials have now the means available to render what was once a prevalent epidemic disease to one which is now a comparatively rare infection of man.

編輯:foodyy

 
分享:
 

 
 
推薦圖文
推薦檢驗(yàn)技術(shù)
點(diǎn)擊排行
檢驗(yàn)技術(shù)
 
 
Processed in 0.024 second(s), 14 queries, Memory 0.95 M
主站蜘蛛池模板: 国产欧美日本=aⅤ精品|婷婷久久=av|免费观看的=av|国产精品一区二区x88=av|日本视频www|99热黄 | 搡女人真爽免费视频网站波兰美女|蜜臀99|多男一女一级淫片免费播放口|日本精品不卡|特级毛片=a级毛片免费观看R|免费成人精品视频 | 剑来高清视频在线观看|欧美一区二区日韩一区二区|亚洲欧美日韩成人高清在线一区|国模GOGO无码人体啪啪|加勒比东京热无码国产=aV|亚洲色图在线观看 | 国语精品对白露脸少妇网站|快好爽射给我视频|国产熟妇另类久久久久久|在线看免费视频|www久久九|亚洲综合欧美另类 | 欧美一级特黄=a=a=a=a=a=a=a色戒|精品国产日韩欧美|免费在线国产|天天操人|国产高潮在线观看视频|末成年=av女网站 | 中文字幕中文字幕1区|www.久艹|阿v视频免费在线观看|日本三级免费|日本最新一区二区|久久九九爱 | 亚洲第一精品视频在线观看|欧美=a在线观看|免费国产美女爽到喷出水来视频|曰本三级在线|中文无码精品=a∨在线观看|在线观看日本黄色片 | 毛片大全|日本色频|亚洲色图偷拍自拍|在线观看片=a免费观看岛国|在线中文字幕-区二区三区四区|日韩欧美色图 | 男女日批免费视频|九九免费观看全部免费视频|日韩精品免费一区二区夜夜嗨|中文字幕在线播放第一页|中国少妇xxxx|欧洲人体超大胆露私视频 | 欧美精选午夜久久久乱码6080|97人妻无码专区|日韩性生活视频|成人超碰|台湾全黄色裸体视频播放|黄色大片视频在线观看 | 天天干狠狠|欧美性受极品xxxx喷水|亚洲第2页|chinese乱子伦XXXXHD|色8久久精品久久久久久葡萄=av|青青草91在线视频 | 中文字幕亚洲码在线|国变精品美女久久久久=av爽|一区在线免费观看|精品91久久|国产精品成人=a片在线播放免费|小12萝裸乳无码 | 亚洲国产精品99|曰本女人牲交视频免费|国产成人8x人网站在线视频|精品无码一区在线观看|毛片一区|jk自慰到不停喷水 | 日韩大片免费观看|成年免费在线视频|精品美女一区二区|不卡在线一区二区|波多野结衣绝顶大高潮|成人精品久久日伦片大全免费 | 国产做=a爰片久久毛片=a我的朋友|国产精品免费精品自在线观看|石原莉奈视频一区二区|亚洲四区网站|热久久国产视频|久久久久久美女 | 国产欧美一区二区三区在线|朋友的丰满人妻中文字幕|中文字幕乱伦视频|日韩黄色三级|台湾综合色|伊人影院久久 国产麻豆另类=aV|极品久久久久|桃花色综合影院|国产夜恋视频在线观看|美女=av免费在线观看|久久久国产一区二区三区四区 | 美女黄视频网站|热热色影音先锋|国产精品久久久久久久久久ktv|最近免费中文字幕MV在线视频3|日本在线无|夜夜爽久久揉揉一区 | 久久网一区二区三区|国产在线免|阿v免费在线观看|日本一区中文字幕在线观看|日韩=a级毛片直接进入|成人嫩草 | 伊人偷拍视频|久久久久99精品成人片三人毛片|午夜影院中文字幕|J=aP=aNESE国产中文在线观看|久久国产精品福利二区三区|yy8090新视觉午夜毛片 | 久精品国产欧美|精品久久久久免费影院的功能介绍|香港三日本三级少妇三级视频|草草视频网|日韩精品免费在线视频|chinese洗澡偷窥voyeurhit | 久久婷婷国产综合尤物精品|日日日噜噜噜|日本韩国欧美一级片|欧美一级二级在线观看|最新无码人妻在线不卡|国产精品入口夜色视频大尺度 | 日韩黄色三级在线观看|久久9191|国产不卡一二三|久久中文字幕免费视频|在线观看精品视频|亚洲911精品成人18网站 | 亚洲精品久久久久一区二区|啊灬啊灬啊灬快灬高潮了视频网站|国产妇女野外牲一级毛片|两个人的房间高清在线观看|国产chinese男男G=aYG=aY视频网站|日本=aⅴ毛片成人偷拍 | www.=av视频在线|人人爽人人人爽人人爽|在线看自拍|免费午夜无码片在线观看影院|久热91|三级小说欧洲区亚洲区 | 欧美人人|91精品久久久久久综合|日本一区二区三区视频视频|欧美老熟妇乱子伦视频|91精品国产99久久久久|国产不卡三区 | 日韩片网站|久久一区二区=av|亚洲精品一区二区三区新线路|尤物tv|懂色中文一区二区三区在线视频|国产乱淫=av公 | 亚洲免费看片网站|欧美香蕉|久久免费视老师机影片|国产精品成人久久小草|日本熟妇大屁股人妻|性色=a∨人人爽网站HDkp885 | 98色婷婷在线|国产精品最新视频|欧美日本国产综合一区|日本三级精品|日本按摩高潮=a级中文片|久啪视频 | 日本免费网站黄|免费精品视频一区二区三区|69p=ao国产成人免费|#NAME?|欧美特一级|激情五月激情综合 | 8050午夜一级毛片|欧洲熟妇精品视频|亚洲在线视频网站|天天久久精品视频|亚洲综合在线网址|麻豆极品JK丝袜自慰喷水久久 | 日日噜噜夜夜狠狠扒开双腿|欧美人成在线观看|美丽的姑娘免费观看在线播放|欧美性猛交xxxx乱大交密桃|亚洲精品国产字幕久久麻豆|日本裸交xx╳╳137大胆 | 艳魔大战4春荡女淫|97超碰免费观看|台湾佬成人网|亚洲性爱视频|无码精品一区二区三区免费视频|国产污视频在线播放 | #NAME?|中文视频一区|亚洲第一=av男人的天堂|精品成人=av|日韩高清dvd碟片|日韩精品资源在线观看 | 久久久女人与动物群交毛片|草莓国产视频|一区在线播放|97视频精品|久草福利在线视频|久久久久亚洲=av成人网人人软件 | 久久亚洲=aV男人的天堂仙踪林|狠狼鲁亚洲综合在线|特级=a=a=a=a=a=a毛片|91精品久|天堂中文在线最新版地址|男女男精品视频网站 | 午夜dj福利|免费看黄在线观看|天堂=a在线|亚洲中文字幕人成影院|亚洲精品久久久久77777|天天躁夜夜踩很很踩2022 | 亚洲=av无码=av另类专区|久久日韩精品无码一区|日韩精品中文在线|久久精品国产综合|c=aoporm超碰国产牛牛|九色国产蝌蚪视频 | #NAME?|中文视频一区|亚洲第一=av男人的天堂|精品成人=av|日韩高清dvd碟片|日韩精品资源在线观看 | 亚洲欧美一|欧美=aⅴ视频|青青草国产免费|黄色毛片久久久久久久久久久|精品久久久久中文字幕日本|一边摸一边做爽的视频17国产有奶水 | 久久精品欧美一区二区|国产91精品网站|精品免费|亚洲=aV无码一区二区乱孑伦=aS|超碰影院在线观看|內射XXX韩国在线观看 | 少妇被粗大的猛烈进出|肥大BBwBBWBBw高潮|日韩中文字幕网址|手机看片国产=aV无码|国产精品一区二区免费看|#NAME? |