粗硬黑大欧美aaaa片视频_国产精品视频区1_日韩综合精品视频_天堂网www在线资源_日韩精品中文字幕视频_无码爽大片日本无码AAA特黄

食品伙伴網(wǎng)服務(wù)號(hào)
 
 
當(dāng)前位置: 首頁 » 專業(yè)英語 » 英語短文 » 正文

切披薩的完美方法

放大字體  縮小字體 發(fā)布日期:2009-12-16
核心提示:LUNCH with a colleague from work should be a time to unwind - the most taxing task being to decide what to eat, drink and choose for dessert. For Rick Mabry and Paul Deiermann it has never been that simple. They can't think about sharing a pizza, fo

    LUNCH with a colleague from work should be a time to unwind - the most taxing task being to decide what to eat, drink and choose for dessert. For Rick Mabry and Paul Deiermann it has never been that simple. They can't think about sharing a pizza, for example, without falling headlong into the mathematics of how to slice it up. "We went to lunch together at least once a week," says Mabry, recalling the early 1990s when they were both at Louisiana State University, Shreveport. "One of us would bring a notebook, and we'd draw pictures while our food was getting cold."

    The problem that bothered them was this. Suppose the harried waiter cuts the pizza off-centre, but with all the edge-to-edge cuts crossing at a single point, and with the same angle between adjacent cuts. The off-centre cuts mean the slices will not all be the same size, so if two people take turns to take neighbouring slices, will they get equal shares by the time they have gone right round the pizza - and if not, who will get more?

    Of course you could estimate the area of each slice, tot them all up and work out each person's total from that. But these guys are mathematicians, and so that wouldn't quite do. They wanted to be able to distil the problem down to a few general, provable rules that avoid exact calculations, and that work every time for any circular pizza.

    As with many mathematical conundrums, the answer has arrived in stages - each looking at different possible cases of the problem. The easiest example to consider is when at least one cut passes plumb through the centre of the pizza. A quick sketch shows that the pieces then pair up on either side of the cut through the centre, and so can be divided evenly between the two diners, no matter how many cuts there are.

    So far so good, but what if none of the cuts passes through the centre? For a pizza cut once, the answer is obvious by inspection: whoever eats the centre eats more. The case of a pizza cut twice, yielding four slices, shows the same result: the person who eats the slice that contains the centre gets the bigger portion. That turns out to be an anomaly to the three general rules that deal with greater numbers of cuts, which would emerge over subsequent years to form the complete pizza theorem.

    The first proposes that if you cut a pizza through the chosen point with an even number of cuts more than 2, the pizza will be divided evenly between two diners who each take alternate slices. This side of the problem was first explored in 1967 by one L. J. Upton in Mathematics Magazine (vol 40, p 163). Upton didn't bother with two cuts: he asked readers to prove that in the case of four cuts (making eight slices) the diners can share the pizza equally. Next came the general solution for an even number of cuts greater than 4, which first turned up as an answer to Upton's challenge in 1968, with elementary algebraic calculations of the exact area of the different slices revealing that, again, the pizza is always divided equally between the two diners (Mathematics Magazine, vol 41, p 46).

    With an odd number of cuts, things start to get more complicated. Here the pizza theorem says that if you cut the pizza with 3, 7, 11, 15… cuts, and no cut goes through the centre, then the person who gets the slice that includes the centre of the pizza eats more in total. If you use 5, 9, 13, 17… cuts, the person who gets the centre ends up with less (see diagram).

    Rigorously proving this to be true, however, has been a tough nut to crack. So difficult, in fact, that Mabry and Deiermann have only just finalised a proof that covers all possible cases.

    Their quest started in 1994, when Deiermann showed Mabry a revised version of the pizza problem, again published in Mathematics Magazine (vol 67, p 304). Readers were invited to prove two specific cases of the pizza theorem. First, that if a pizza is cut three times (into six slices), the person who eats the slice containing the pizza's centre eats more. Second, that if the pizza is cut five times (making 10 slices), the opposite is true and the person who eats the centre eats less.

    The first statement was posed as a teaser: it had already been proved by the authors. The second statement, however, was preceded by an asterisk - a tiny symbol which, in Mathematics Magazine, can mean big trouble. It indicates that the proposers haven't yet proved the proposition themselves. "Perhaps most mathematicians would have thought, 'If those guys can't solve it, I'm not going to look at it.'" Mabry says. "We were stupid enough to look at it."

    Most mathematicians would have thought, 'I'm not going to look at it.' We were stupid enough to try

    Deiermann quickly sketched a solution to the three-cut problem - "one of the most clever things I've ever seen," as Mabry recalls. The pair went on to prove the statement for five cuts - even though new tangles emerged in the process - and then proved that if you cut the pizza seven times, you get the same result as for three cuts: the person who eats the centre of the pizza ends up with more.

    Boosted by their success, they thought they might have stumbled across a technique that could prove the entire pizza theorem once and for all. For an odd number of cuts, opposing slices inevitably go to different diners, so an intuitive solution is to simply compare the sizes of opposing slices and figure out who gets more, and by how much, before moving on to the next pair. Working your way around the pizza pan, you tot up the differences and there's your answer.

    Simple enough in principle, but it turned out to be horribly difficult in practice to come up with a solution that covered all the possible numbers of odd cuts. Mabry and Deiermann hoped they might be able to deploy a deft geometrical trick to simplify the problem. The key was the area of the rectangular strips lying between each cut and a parallel line passing through the centre of the pizza (see diagram). That's because the difference in area between two opposing slices can be easily expressed in terms of the areas of the rectangular strips defined by the cuts. "The formula for [the area of] strips is easier than for slices," Mabry says. "And the strips give some very nice visual proofs of certain aspects of the problem."

    Unfortunately, the solution still included a complicated set of sums of algebraic series involving tricky powers of trigonometric functions. The expression was ugly, and even though Mabry and Deiermann didn't have to calculate the total exactly, they still had to prove it was positive or negative to find out who gets the bigger portion. It turned out to be a massive hurdle. "It ultimately took 11 years to figure that out," says Mabry.

    Over the following years, the pair returned occasionally to the pizza problem, but with only limited success. The breakthrough came in 2006, when Mabry was on a vacation in Kempten im Allg?u in the far south of Germany. "I had a nice hotel room, a nice cool environment, and no computer," he says. "I started thinking about it again, and that's when it all started working." Mabry and Deiermann - who by now was at Southeast Missouri State University in Cape Girardeau - had been using computer programs to test their results, but it wasn't until Mabry put the technology aside that he saw the problem clearly. He managed to refashion the algebra into a manageable, more elegant form.

    Back home, he put computer technology to work again. He suspected that someone, somewhere must already have worked out the simple-looking sums at the heart of the new expression, so he trawled the online world for theorems in the vast field of combinatorics - an area of pure mathematics concerned with listing, counting and rearranging - that might provide the key result he was looking for.

    Eventually he found what he was after: a 1999 paper that referenced a mathematical statement from 1979. There, Mabry found the tools he and Deiermann needed to show whether the complex algebra of the rectangular strips came out positive or negative. The rest of the proof then fell into place (American Mathematical Monthly, vol 116, p 423).

    So, with the pizza theorem proved, will all kinds of important practical problems now be easier to deal with? In fact there don't seem to be any such applications - not that Mabry is unduly upset. "It's a funny thing about some mathematicians," he says. "We often don't care if the results have applications because the results are themselves so pretty." Sometimes these solutions to abstract mathematical problems do show their face in unexpected places. For example, a 19th-century mathematical curiosity called the "space-filling curve" - a sort of early fractal curve - recently resurfaced as a model for the shape of the human genome.

    Mabry and Deiermann have gone on to examine a host of other pizza-related problems. Who gets more crust, for example, and who will eat the most cheese? And what happens if the pizza is square? Equally appetising to the mathematical mind is the question of what happens if you add extra dimensions to the pizza. A three-dimensional pizza, one might argue, is a calzone - a bread pocket filled with pizza toppings - suggesting a whole host of calzone conjectures, many of which Mabry and Deiermann have already proved. It's a passion that has become increasingly theoretical over the years. So if on your next trip to a pizza joint you see someone scribbling formulae on a napkin, it's probably not Mabry. "This may ruin any pizza endorsements I ever hoped to get," he says, "but I don't eat much American pizza these days."

    工作后與同事共進(jìn)午餐應(yīng)該是一個(gè)放松的時(shí)刻-最費(fèi)神的是要決定吃什么、喝什么以及選擇甜點(diǎn)。對(duì)Rick和Paul Deiermann來說,這從來不是那么簡(jiǎn)單的。例如,如果他們沒有倉(cāng)促地陷入怎樣切一塊披薩的數(shù)學(xué)問題,他們是不會(huì)考慮共享一塊披薩的。Mabry回憶起他們都在路易斯安那州大學(xué)的時(shí)候,說:"我們至少共進(jìn)午餐一周一次,我們倆會(huì)有一個(gè)帶著筆記本,我們?cè)诋嫺鞣N圖形,而食物已經(jīng)變涼了。"

    使他們迷惑的問題是這樣的。假設(shè)急匆匆的服務(wù)生是從偏離中心的位置切一塊披薩的,但是所有邊-到-邊的切線(即切披薩的線)都相交于一點(diǎn),且相鄰切線間的角度是相等的。偏離中心的切法意味著披薩片的大小是不同的,因此如果兩個(gè)人輪流按順序依次拿披薩直到他們分完,那么他們會(huì)得到相同量的披薩嗎?如果不會(huì),誰拿到的更多?

    當(dāng)然你可以估計(jì)每一塊的面積,把面積加起來得到每個(gè)人拿到的總面積。但是這兩個(gè)人是數(shù)學(xué)家,所以他們不會(huì)這樣做。他們希望能夠把這一問題的實(shí)質(zhì)歸納成幾條普遍的、可證明的定理,以避免精確的計(jì)算,并希望只要是圓形的披薩,這些定理都適用。

    和許多數(shù)學(xué)上的謎題一樣,這一問題登上了舞臺(tái)-每個(gè)人都在尋找不同的可能的情況。最簡(jiǎn)單的例子是考慮什么時(shí)候至少有一刀是恰好經(jīng)過披薩中心的。一種快速粗略的想法是披薩片是沿著經(jīng)過中心的那一刀成對(duì)分布的,因此無論切多少刀,兩個(gè)人都能吃到同量的披薩。

    要是這樣就好了。如果沒有一刀是經(jīng)過中心的呢?對(duì)于只切一刀的披薩,問題很明顯:誰吃到了中心,誰就吃得多。切兩刀分成四塊的情況表明同樣的結(jié)果:吃到含有中心那塊披薩的人得到更多。但當(dāng)切更多的刀時(shí),這證明是違反了三個(gè)定理,這一問題出現(xiàn)在以后的很多年里,形成了完整的披薩定理。

    第一個(gè)人提出,如果通過你選擇的一點(diǎn)切一塊披薩,刀數(shù)是大于2的偶數(shù),那么披薩會(huì)在兩個(gè)用餐者之間平均分配,如果兩個(gè)人是輪流吃的話。1967年,一個(gè)叫L.J.Upton的人在《數(shù)學(xué)》雜志上首次探討了這一方面,他沒有為刀數(shù)為2時(shí)的情況費(fèi)心:他要求讀者去證明切四刀時(shí)(八塊披薩),兩個(gè)人仍能平均分享披薩。接下來對(duì)于大于四刀的偶數(shù),出現(xiàn)了問題的通解。1968年,Upton的問題首次得到解答,答案使用基本的代數(shù)計(jì)算算出了不同披薩片的精確面積,它表明,披薩總是能夠在兩個(gè)人中間平均分配。

    如果刀數(shù)為奇數(shù),問題變得更加復(fù)雜。披薩定理認(rèn)為如果你分別用3、7、11、15刀來切,且沒有一刀是經(jīng)過中心的,那么吃到有中心披薩片的人吃得多。如果你用5、9、13、17刀來切,吃到有中心披薩片的人吃得少。

    然而要嚴(yán)格證明這個(gè)理論卻非易事。事實(shí)上,它是如此困難以至于Marby和Deiermann只能用一種包含所有可能情況的證明來定稿。

    Marby和Deierman對(duì)這一問題的探求始于1994年,當(dāng)時(shí)Deiermann給Mabry看了披薩問題的修訂版,并再一次刊登在《數(shù)學(xué)雜志》上。讀者們被邀請(qǐng)來證明披薩定理的兩種特例。首先,如果披薩被切了三次(六塊),吃到有中心披薩片的人吃得多。其次,如果披薩被切了五次(十塊),吃到有中心披薩片的人吃得少。

    第一種觀點(diǎn)是用來拋磚引玉的:它早已被作者證明過。而第二種觀點(diǎn)前面加了一個(gè)星號(hào)-在《數(shù)學(xué)雜志》上,這一小符號(hào)代表了一個(gè)大問題。它表明,提出者本人還沒有辦法證明他們提出的觀點(diǎn)。"也許大多數(shù)數(shù)學(xué)家已經(jīng)想過,如果他們都不能解決,那我將放棄研究它,"Marby說。"去解決這個(gè)問題,我們已經(jīng)夠蠢了。"

    Dieermann對(duì)三刀問題的答案快速列了草圖,Marby回憶說"是我見過的最聰明的事情之一。"他們繼續(xù)證明了五刀切的理論-盡管在過程中又出現(xiàn)了新的難題-然后證明了七刀切的理論,如果你對(duì)一塊披薩切七次,你將得到與切三次相同的結(jié)果,即吃到含有中心的披薩片的人吃得更多。

    受到成功的鼓舞,他們認(rèn)為也許他們偶然發(fā)現(xiàn)了一種技術(shù),這種技術(shù)能一勞永逸地證明整個(gè)披薩定理。對(duì)于刀數(shù)為奇數(shù)的切法,相對(duì)的披薩片不可避免地被不同的人所食用,因此一種直觀的解決方法是簡(jiǎn)單地比較相對(duì)兩塊披薩片的大小,然后計(jì)算出誰吃得多,然后比較下一對(duì)披薩片的大小。當(dāng)披薩的一整圈都輪完了,你就可以把結(jié)果加起來,得到結(jié)果了。

    理論上很簡(jiǎn)單,但要提出一種方法來概括刀數(shù)為偶數(shù)時(shí)所有可能的情況,實(shí)際上困難得多。Mabry和Deiermann希望他們可以用一種簡(jiǎn)潔的幾何方法把問題簡(jiǎn)化。問題的關(guān)鍵是在每一刀之間的長(zhǎng)方形以及與穿過中心線平行的線。那是因?yàn)橄鄬?duì)的兩塊披薩面積的大小可以用長(zhǎng)方形的面積來表示。"長(zhǎng)方形的面積公式比披薩的簡(jiǎn)單得多。"Marby說:"并且長(zhǎng)方形給出了這一問題有關(guān)方面的直觀證據(jù)。"

    不幸的是,這一方法仍然包含了一系列復(fù)雜的代數(shù)計(jì)算,還涉及了復(fù)雜得三角函數(shù)。這個(gè)表達(dá)式令人頭痛,盡管如此,他們還是不得不計(jì)算出精確結(jié)果,他們?nèi)砸C明誰得到更多披薩的觀點(diǎn)是正確的還是錯(cuò)誤的。結(jié)果證明這是一個(gè)巨大的障礙。"最終耗費(fèi)了11年才弄清楚",Marby說。

    在接下來的幾年里,兩個(gè)人偶爾會(huì)討論一下披薩問題,但是只有有限的進(jìn)展。2006年,問題終于有了突破,此時(shí)Mabry正在法國(guó)極靠南的Kempten渡假。"我住在一個(gè)很好的旅館房間里,舒服涼爽的環(huán)境,沒有電腦,"他說"我再一次開始想這個(gè)問題,就是那時(shí)所有一切都想通了。"此前,Mabry和Deiermann在東南部的密蘇里州大學(xué),一直用計(jì)算機(jī)程序檢驗(yàn)他們的結(jié)果。但是,直到Mabry放下了計(jì)算機(jī)技術(shù),問題才迎刃而解。他成功地把代數(shù)公式改進(jìn)成了更易處理、更簡(jiǎn)潔美觀的形式。

    回家后,他又用計(jì)算機(jī)開始了工作。他懷疑有人在其他地方已經(jīng)就計(jì)算出了這種結(jié)果看起來很簡(jiǎn)單的形式,可能存在于一些新表達(dá)式中,因此他去網(wǎng)上搜索,大范圍中組合起來的各種關(guān)鍵詞-一種只有在數(shù)學(xué)中才用到的方法,涉及列表、計(jì)算和重排-這可能能使他找到一直在尋找的結(jié)果。

    最終他找到了他想要的:一篇1999年的論文,引用了一個(gè)1979得數(shù)學(xué)觀點(diǎn)。在那里,他找到了他們需要的工具,用這個(gè)工具可以說明長(zhǎng)方形面積的復(fù)雜代數(shù)公式是正確的還是錯(cuò)誤的。剩下的證據(jù)一一得到了證明。

    因此,隨著披薩定理被證明了,那么一些重要的實(shí)際問題就能更容易地解決了嗎?事實(shí)上,人們還看不到披薩定理會(huì)有什么應(yīng)用-并不是Mabry過分悲觀了。他說;"對(duì)數(shù)學(xué)家來說,這是一個(gè)有趣的問題,我們通常不關(guān)心結(jié)果是否能有應(yīng)用因?yàn)榻Y(jié)果本事就很完美。"有時(shí),抽象數(shù)學(xué)問題的解答確實(shí)會(huì)在意想不到的領(lǐng)域中得到應(yīng)用。例如,19世紀(jì)一個(gè)數(shù)學(xué)家的好奇心-叫做"空間-充滿曲線"-一種早期的分形曲線-最近重新浮出水面,作為模擬人類基因組形狀的模型。

    Mabry和Deiermann繼續(xù)檢驗(yàn)了一系列其他的關(guān)于披薩的問題。例如,誰會(huì)吃到更多的披薩皮?誰會(huì)吃到更多的奶酪?如果披薩是方形的,情況又該如何呢?如果增加了維數(shù)情況又會(huì)怎樣,這同樣引起數(shù)學(xué)家的興趣。一個(gè)三維的披薩,是一個(gè)半圓形的烤餡餅,一個(gè)充滿各種披薩配料的面包袋,它又會(huì)引出一系列關(guān)于半圓形的猜想,其中的一些已經(jīng)被Mabry和Deiermann證明了。它是一種熱情,多年里漸漸變成了一種理論。如果下次你去吃披薩,看到某個(gè)人在紙巾上涂寫公式,那一定不是Mabry."雖然會(huì)破壞我曾經(jīng)希望得到的披薩定理,但我這些日子確實(shí)不再吃很多美國(guó)披薩了。"

更多翻譯詳細(xì)信息請(qǐng)點(diǎn)擊:http://www.trans1.cn
 
關(guān)鍵詞: 披薩 完美方法
[ 網(wǎng)刊訂閱 ]  [ 專業(yè)英語搜索 ]  [ ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關(guān)閉窗口 ] [ 返回頂部 ]
分享:

 

 
推薦圖文
推薦專業(yè)英語
點(diǎn)擊排行
 
 
Processed in 0.071 second(s), 15 queries, Memory 0.92 M
主站蜘蛛池模板: 欧美做爰爽爽爽爽爽爽|国内揄拍国内精品|天天澡天天摸天天添视频|84c=aocom最新网站|69堂在线观看|天天澡天天狠天天天做 | 天天操天天干天天玩|亚洲人在线视频|国产精品18久久久久vr手机版特色|高清一二三区|被黑人粗黑大肉奉视频|97国产dvd | 综合亚洲网|亚洲综合成人亚洲|日本精品一区二区三区在线观看|粗大猛烈进出呻吟声的视频|绝世武魂短剧免费观看|黄色一级免费大片 | 欧美一区二不卡视频|片多多免费观看|成人午夜精品无码一区二区三区|国产目拍亚洲精品二区|午夜婷婷|伊人春色在线观看 | 小早川怜子痴女在线精品视频|国产+免费+无码|#NAME?|午夜无码成人免费视频|国产精品成人一区视频网站|色综合桃花网 亚洲女人天堂在线|四虎福利影院|日韩视频在线观看视频|欧美日韩成人一区|黑人异族巨大巨大巨粗|超碰在线c=ao | 国产大学生粉嫩无套流白浆|老司机久久99久久精品播放免费|日本国产三级|久久久久久久久久久久久久久久久久=av|欧美日本精品|涩涩91 | 在线一区二区日韩|99只有精品|国产成人羞羞视频在线|www.成人网.com|久久在视频|日韩免费v=a | 三区视频在线观看|中文字幕第2页|色吧在线播放|啦啦啦视频在线观看高清免费|日本ⅹxxxx久色视频免费观看|亚洲精品久久久久久久蜜臀老牛 | 国产精品久久久久久久浪潮网站|亚洲青草视频|乌克兰18极品XX00喷水|#NAME?|亚洲综合在线一区二区三区|国产超碰人人做人人爱ⅴ=a 91精品一区二区三区在线|情侣偷拍在线一区|天堂网在线.www天堂|成人=a毛片免费全部播放|日本国产一区二区|美女被日在线观看 | 亚洲第一区在线观看|性欧美大战久久久久久久安居码|天天干夜夜春夜夜爽|色视频2|成人爽=a毛片免费啪啪红桃视频|极品少妇小泬50PTHEPON 91成人毛片|#NAME?|亚洲视频1区2区3区4区|国产思思99re99在线观看|激情春色|国产一区二区三区四区在线观看 | 国产一区黄|午夜福利国产成人无码GIF动图|骚色综合|国产婬乱=a一级毛片多女|99久久九九国产精品国产免费|久久久久成人精品免费播放动漫 | 极品少妇x88|国产免费看福利|亚洲欧美国产另类首页|69xx免费播放|亚洲=aV无码天堂一区二区三区|国产真实乱在线更新 | 亚洲=av无码=av另类专区|久久日韩精品无码一区|日韩精品中文在线|久久精品国产综合|c=aoporm超碰国产牛牛|九色国产蝌蚪视频 | 亚洲永久精品国语字幕|yellow中文字91幕国产在线|综合在线国产|少妇被粗大猛进去69影院|久操视频在线看|夜夜性日日交xxx性视频 | 久久99国产一区二区三区|99热这里只有精|护士做xxxxx免费看国产|色情一区二区三区免费看|亚洲天堂精品在线|欧美极品kenn=aj=ames喷水 | 国产一区二区三区精品久久久|欧美午夜一区二区|久草新免费|91=av成人|男人午夜在线|亚洲欧美国产vr在线观 | 久久国产福利一区二区|一本色道久久88精品综合|亚洲学生妹高清=av|WWW亚洲色大成网络|免费在线观看成人=av|亚洲天堂资源在线 | 天天干狠狠|欧美性受极品xxxx喷水|亚洲第2页|chinese乱子伦XXXXHD|色8久久精品久久久久久葡萄=av|青青草91在线视频 | 亚洲精品毛片一区二区|在线理论片|精品久久久无码中文字幕边打电话|久久久久久久|亚洲中文字幕无码第一区|亚洲欧美偷自乱图片 | 家庭午夜影院|chinese老熟妇老女人hd|欧美成性色|中文字幕无码=a级毛片观看|日本在线观看中文字幕|久久国产精品偷导航 | 国内精品久久国产|国产一区二区三区内射高清|一二三四视频在线社区中文字幕2|大地资源在线观看中文免费|午夜精品免费观看|无码成人18禁动漫网站 | 亚洲人免费|亚洲精品成=a人|日本成人黄色片|第四色区|www.se99午夜.com|久久这里精品青草免费 | 狠狠噜天天噜日日噜无码|欧美=a=av|日批视频在线看|少妇videos|免费ā片在线观看|国产成人美女=aV | 亚洲国产一区在线观看|免费=a级伦费影视在线观看|日本在线不卡一区二区三区|91在线免费视频观看|俄罗斯=a级毛片|丁香五月开心婷婷综合中文 | 国产小视频在线免费观看|欧美亚洲综合另类|亚洲精品在线第一页|日操视频|亚洲精品久久无码老熟妇|在线观看视频色 | 最新中文乱码字字幕在线|亚洲色无码中文字幕|久久久精品免费网站|高潮毛片无遮挡高清视频播放|欧美黄色一级带|国产操女人 | 免费国产网站|秋霞午夜一区二区三区视频|99热在线看|日韩精品久久一区二区|午夜看一级毛片|天天鲁在视频在线观看 | 日本亚洲欧洲精品|19禁无遮挡啪啪无码网站性色|久久亚洲=aⅴ无码精品色午夜|91tv永久入口|91九色鹿精品国产综合久久香蕉|91亚洲福利 | 美女=av影院|惊弦45集全免费815|日本免费人成视频播放|欧洲一区二区三区精品|亚洲国产精品久久无码中文字|欧美刺激性大交 | 国产乱妇乱子在线播视频播放网站|国产免费人成在线视频|精品欧洲=av无码一区二区14|精品少妇一区二区三区在线观看|播放一区二区|国产精品久久久久久久久无码日本蜜乳 | 久久日=av|91精品国产闺蜜国产在线闺蜜|91视频免费观看网站|99精品国产高清在线观看|亚洲女子=a中天字幕|日韩=av黄色在线观看 | 岛国午夜视频一区三区|欧美成人免费一级|加勒比中文字幕无码一区|亚洲中文字幕在线乱码|草久=av|国产区一区 | CHINESE新版少妇嫖妓VIDEOS|老外黄色一级片|天天午夜|欧美不卡影院|精品国产V无码大片在线看|国产免费网址 | 桃色=aV久久无码线观看|东方=aⅴ免费观看久久=av|深夜福利1000|成本人片无码中文字幕免费|成人国产精品一级毛片视频|免费一级黄色毛片 男同免费|久久久久久草莓香蕉步兵|亚洲女女女同性VIDEO|免费的=av不用播放器的|黄频网站在线观看|久久久88 | 欧美一级黄色影院|中文在线二区|69国产精品免费视频|免=av片|992tv在线观看|日出水了好爽视频 | 国产精品丝袜在线观看|日本女人xx|中美性猛交xxxx乱大交3|99久久久久久久久久|#NAME?|国产精品绯色蜜臀99久久 | 大内密探零性|国产美女自拍小视频|久久久久久久综合狠狠综合|九九热免费精品|性=a毛片|午夜免费啪啪 | 国产777精品精品热热热一区二区|欧美国产日韩在线播放|成人黄色在线观看视频|久久成熟|在线观看免费视频一区二区三区|欧美精品网址 | 性情中人中文网|欧美老熟妇XB水多毛多|欧美波霸影院|炼气练了三千年第四季在线观看|免费一区二区三区在在线视频|艾草在线精品视频免费观看 | 91福利在线免费观看|777米奇影视盒|久久一本人碰碰人碰|女优一级片|每日更新在线|美女诱惑一区 | 欧美日韩一区在线观看|日日噜噜噜夜夜爽爽国产|国产成人精品一、二区|国产中文日韩欧美|经典欧美videossexo2|青青草成人免费视频在线观看 |