粗硬黑大欧美aaaa片视频_国产精品视频区1_日韩综合精品视频_天堂网www在线资源_日韩精品中文字幕视频_无码爽大片日本无码AAA特黄

食品伙伴網服務號
 
 
當前位置: 首頁 » 專業英語 » 專業知識 » 正文

Food Components -Potassium (K)

放大字體  縮小字體 發布日期:2007-05-05
 

Introduction

Potassium is an essential dietary mineral that is also known as an electrolyte. The term electrolyte refers to a substance that dissociates into ions (charged particles) in solution making it capable of conducting electricity. The normal functioning of our bodies depends on the tight regulation of potassium concentrations both inside and outside of cells.

Food Sources

The richest sources of potassium are fruits and vegetables.

Minerals from plant sources may vary from place to place because soil mineral content varies geographically.

 

Some important food sources of potassium:

 

Tomato paste
Spinach
Raisins
Radish
Orange juice
Passion fruit
Papaya
Banana
Red bell pepper
Apricot

 

Recommended Dietary Allowance (RDA)

The European Union and the US have not set a RDA for the general population.

 

Inhibitors/stimulators:

The following components have been found to inhibit the absorption of potassium:

Anti-inflammatory agents – Potassium absorption is hindered by the anti-inflammatory agents colchicine and salicylazosulfapyridine.

Laxatives – Potassium absorption is hindered by laxatives such as phenolphthalein, cascara sagrada, and bisacodyl.

Various antimicrobial agents – Potassium absorption is hindered by various antimicrobial agents such as tetracycline and neomycin.

 

Functions in the Body

Maintenance of membrane potential

Potassium is the principal positively charged ion (cation) in the fluid inside of cells, while sodium is the principal cation in the fluid outside of cells. Potassium concentrations are about 30 times higher inside than outside cells, while sodium concentrations are more than 10 times lower inside than outside cells. The concentration differences between potassium and sodium across cell membranes create an electrochemical gradient known as the membrane potential. Ion pumps in the cell membrane, especially the sodium potassium-ATPase pumps, maintain a cell's membrane potential. These pumps use ATP (energy) to pump sodium out of the cell in exchange for potassium. Their activity has been estimated to account for 20%-40% of the resting energy expenditure in a typical adult. The large proportion of energy dedicated to maintaining sodium/potassium concentration gradients emphasizes the importance of this function in sustaining life. Tight control of cell membrane potential is critical for nerve impulse transmission, muscle contraction, and heart function.

Cofactor for enzymes

A limited number of enzymes require the presence of potassium for their activity. The activation of sodium, potassium-ATPase requires the presence of sodium and potassium. The presence of potassium is also required for the activity of pyruvate kinase, an important enzyme in carbohydrate metabolism.

Blood buffer system

Potassium is an essential constituent of several blood buffer systems. Potassium complexes bind ionically with the sulphate group of sulphuric acid, thereby reducing the acidity of the system by forming a potassium sulfate salt. Potassium has a similar action in base buffer systems with the conversion of the strong base potassium hydroxide into the relatively neutral water molecule.

Muscle contraction

After the transmission of a nerve impulse, during which sodium ions are shifted across the nerve's synaptic membrane, potassium and sodium are exchanged by the previously mentioned "pump" mechanism (so as to restore the original sodium concentration on the external side of the membrane). This "pumping" of sodium outside is essential to prepare for subsequent nerve transmission. Potassium acts to relax muscle contraction in opposition to calcium, which induces contraction

Deficiency

An abnormally low plasma potassium concentration is referred to as hypokalemia. Hypokalemia is most commonly a result of excessive loss of potassium, e.g., from prolonged vomiting, the use of some diuretics, some forms of kidney disease, or disturbances of metabolism. The symptoms of hypokalemia are related to alterations in membrane potential and cellular metabolism.

Low dietary intakes of potassium do not generally result in hypokalemia. However, recent research indicates that insufficient dietary potassium may increase the risk of a number of chronic diseases.

Toxicity

Abnormally elevated serum potassium concentrations are referred to as hyperkalemia. Hyperkalemia occurs when potassium intake exceeds the capacity of the kidneys to eliminate it. Acute or chronic renal (kidney) failure, the use of potassium-sparing diuretics, and insufficient aldosterone secretion (hypoaldosteronism) may result in the accumulation of excess potassium due to decreased urinary potassium excretion. Oral doses greater than 18 grams taken at one time in individuals not accustomed to high intakes may lead to severe hyperkalemia, even in those with normal kidney function.

Hyperkalemia may also result from a shift of intracellular potassium into the circulation, which may occur with the rupture of red blood cells (hemolysis) or tissue damage (e.g., trauma or severe burns). Symptoms of hyperkalemia may include tingling of the hands and feet, muscular weakness, and temporary paralysis. The most serious complication of hyperkalemia is the development of an abnormal heart rhythm (cardiac arrhythmia), which can lead to cardiac arrest

Regulation

The movement of potassium into extracellular fluid from muscle cells is an important part of the contraction mechanism of muscle tissue.

Potassium is pumped into the cell by active transport systems, which concomitantly pump sodium out of the cell. The preferential segregation of sodium and potassium across the cell's biological membrane is important in maintaining osmotic balance, the electrochemical gradient of membranes, and the regulation of extracellular fluid volume. This mechanism of ion pumping is also instrumental in the restoration of potassium/sodium gradient after the ionic transmission of nerve impulses.

Potassium is principally found within cellular fluids and its counterpart, sodium, is mostly found within the extracellular fluids. The segregation of these two ions occurs by means of an adenosine triphosphate (ATP) driven "pump." The pump consists of two proteins within the cellular membrane which, upon energy release from ATP, transport three sodium molecules to the outside of the cell membrane, while simultaneously bringing in two potassium molecules.

A similar pumping mechanism is used in the transport of glucose from the intestine into the bloodstream. High sodium concentrations in the intestinal fluids tend to promote the movement of sodium across the mucosal cells of the intestine. As sodium is moved across the cells, glucose is concomitantly moved into the cells. The concentration of glucose within the cells builds up until it begins to diffuse into the bloodstream. The "pump" mechanism pumps the sodium into the blood in exchange for potassium, thereby eliminating sodium buildup within the cell.

Potassium is absorbed readily in the small intestine; excess potassium is excreted through the urine. Aldosterone hormone tends to promote potassium excretion in substitution for sodium absorption. This is done by activation of the renal "pump" proteins, which simultaneously exchange potassium for sodium across the biological membrane.

更多翻譯詳細信息請點擊:http://www.trans1.cn
 
[ 網刊訂閱 ]  [ 專業英語搜索 ]  [ ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關閉窗口 ] [ 返回頂部 ]
分享:

 

 
推薦圖文
推薦專業英語
點擊排行
 
 
Processed in 1.160 second(s), 243 queries, Memory 1.74 M
主站蜘蛛池模板: 欧美性猛片=a=a=a=a=a=a=a做受|成年人网站91|997xx.亚洲第一区|中文在线最新版天堂|#NAME?|国产精品久久久久久久久久久免费 | 国产精品久久久久久免费观看|黄色=a毛片|日韩欧美亚洲一区二区|日韩午夜免费视频|日本三级网站视频|欧美性生恔XXXXXDDDD | 亚洲狠狠婷婷综合久久蜜桃|国产成人精品福利网站人|爆乳美女脱内衣18禁裸露网站|免费一级特黄特色大片|欧美成人亚洲|国产精品麻豆v=a在线播放 | 色妹子影院|国产福利在线永久视频|国产精品日韩精品|天堂在线99香蕉在线视频|日本欧美一区二区免费不卡|少妇人妻在线无码天堂视频网 | 五月天色中色|蜜桃精品视频在线|日本特级=aⅴ一级毛片|二区三区4区5区6区人妻|成人毛片软件|#NAME? | 成全高清视频免费观看|亚欧在线观看视频|天天躁日日躁狠狠躁欧美老妇|性感一级片|日韩一区免费观看|欧美日韩在线免费观看 | 亚洲伦理一区二区三区|在线观看=aV网站永久免费观看|狠狠色婷婷丁香五月|色翁荡息又大又硬又粗又爽|中文色视频|成年人免费看的 | 国产一级黄色|美女把尿口扒开让男人桶|sif=angtv国产在线|亚洲一级毛片色视频|一级二级三级=av|特级理论片 | 爱操=av|亚洲欧美人成视频一区在线|女同性爽爽爽免费观看|久久久久亚洲国产精品|熟女精品视频一区二区三区|极品新婚夜少妇真紧 | АⅤ天堂中文在线网|人人澡人人澡人人看欧美|高H喷水荡肉爽文NP肉色学校|日韩一二三区不卡在线视频|欧美在线观看www|中文字幕一区二区三区5566 | 国产精品久久网站|欧美老熟妇=a=a=a=a=a=a|亚洲啊v在线|精品久久久免费|亚洲=aV无码专区在线观看成人|免费观看又色又爽又黄的崩锅 | 色妹子影院|国产福利在线永久视频|国产精品日韩精品|天堂在线99香蕉在线视频|日本欧美一区二区免费不卡|少妇人妻在线无码天堂视频网 | 国产在线专区|一本一道=av中文字幕无码|天天干天天看天天操|992tv成人免费影院|精品午夜福利在线视在亚洲|国产成人精品午夜福利2021 | 亚洲欧美专区|69自拍视频|成人小视频在线观看|日本三级高清|亚洲=aV无码日韩=aV无码导航|日本xxxxwwwwww | 久久精品亚洲酒店|黄国产区|在线视频中文字幕|91精品欧美|三区中文字幕|日韩亚洲精品在线 | 成人国产精品免费视频|免费视频97|成年人深夜福利|国产精品亚洲一区二区三区在线观看|亚洲性久久9久久爽|超碰超碰97 | 久久福利精品|亚洲日韩精品=aV无码麻豆|粗大挺进尤物人妻中文字幕|成人不卡一区二区|九九爱爱视频|#NAME? | 97成人超碰免|欧美综合视频在线观看|强被迫伦姧惨叫在线视频|亚洲=aV成人无码网站大全|91精选日韩综合永久入口|欧美精品一区二区三区高清=aⅴ | 无码专区中文字幕无码野外|亚洲爱婷婷色婷婷五月|成人99视频|欧美人善交videosg|免费看片一区|#NAME? | 大地免费资源|成人综合色区|无码综合天天久久综合网|男人猛躁女人网站|国产午夜福利小视频合集|国产女人与公拘交在线播放 | 无遮挡很爽很污很黄的女|免费看日韩片|#NAME?|中文字幕第一页在线视频|j=aponensisfes中国免费|国产gv网站在线视频 | 91大片淫黄大片在线天堂|国内国产精品久久|91cc.live最新国产|成人=aⅴ视频|v=a在线|国产成人免费视 | 扒开双腿吃奶呻吟做受视频|日本视频在线观看一区二区三区|国产欧美日韩精品在线一区|国产精品色婷婷亚洲综合看|午夜专区|亚洲人成人毛片无遮挡 | 99视屏|亚洲精品日韩专区|欧美一级国产|久久丫不卡人妻内射中出|欧美日韩另类综合|亚洲色无码=a片中文字幕 | WWW免费视频在线观看播放|欧美日本一道本一区二区|999在线精品视频|国产十日韩十欧美|天堂网中文字幕在线观看|日韩一二三四 | 一本到亚洲网|99久久精品国产欧美主题曲|973理论片235影院|国产一区二区高清在线|亚州国产视频|国产精品一卡二卡三卡 | 51久久夜色精品国产水果派解说|国产欧美日韩视频免费|国产96在线亚洲|人妻无码中文字幕免费视频蜜桃|成人=a片产无码免费视频奶头鸭度|亚洲已满18点击进入在线看片 | 嗯嗯嗯在线观看|亚洲国产欧美日本视频|国产成人综合色就色综合|国产精品自拍500|国产精品91一区二区三区|免费黄色成人 | 日韩欧美=a级毛片免费观看|呦呦国产|#NAME?|黄色一级视频免费|一本之道大象高清特色|欧美日韩九区 | 国产成人精品视频一区二区不卡|欧美日韩色另类综合|中文字幕在线欧美|免费视频日韩|国产精品第七十二页|天天草狠狠干 | 日本三级日本三级韩国三级视|国产精品国产自线拍免费|CHIN=a男男互插网站|女邻居丰满的奶水在线观看|免费国产v=a在线观看|国产乱子伦无套一区二区三区 | 巜豪妇荡乳2在线观看|又粗又硬进去好爽=a片视频野花|6969成人亚洲婷婷|99视频免费播放|97国产在线播放第一页|人人人澡人人人妻人人人少妇 | 精品久久久久国产|欧美日在线|国产18一19sex性护士|不卡国产视频|j=ap=anese36hdxxxx日韩|欧美BBWHD老太大 | #NAME?|亚洲中文字幕无码=av在线|久久天天躁狠狠躁夜=av|91视频免费入口|午夜三级=a三级三点在线观看|国产乱码字幕精品高清=av | 国产视频资源|日日摸久久久精品|男人午夜视频|山外人精品影院|一区二区三区=av夏目彩春|久久网精品三级片 | 天天干少妇|中文字幕在线亚洲日韩6页|v片免费在线观看|国产人妻人伦=aV|日本老妇和子乱视频在线观看|少妇又色又紧又爽又高潮 | 亚洲日本乱码一区二区产线一∨|我要看WWW免费看插插视频|老师课后辅导乳揉搓H在线观看|视频一区二区三区波多野结衣|中文字幕在线资源|精品国产第一页 | 第一=av在线|影音先锋亚洲=aV资源网站|日本WV一本一道久久香蕉|国产精品高清一区二区三区|欧美=a级在线|啪啪免费视频在线观看 | 午夜免费啪视频在线体验区|亚洲成本人片无码免费|亚洲=av成人无码网站色优|自拍偷拍第1页|久久精品性一区区裸体艺术|久久久久亚洲=av成人动图 | l礼香的真实|99久久99九九99九九九|精品日产一区二区三区视频怎么看|18禁黄无码免费网站高潮|亚洲成=av在线|色狠狠=aV老熟女 | 水蜜桃一区二区|特黄特黄=a级毛片免费专区|99久免费视频精品老司机|#NAME?|狠狠综合久久久久尤物|欧美成人精品在线观看 |