粗硬黑大欧美aaaa片视频_国产精品视频区1_日韩综合精品视频_天堂网www在线资源_日韩精品中文字幕视频_无码爽大片日本无码AAA特黄

食品伙伴網(wǎng)服務(wù)號(hào)
 
 
當(dāng)前位置: 首頁 » 專業(yè)英語 » 專業(yè)知識(shí) » 正文

Enzymatic browning

放大字體  縮小字體 發(fā)布日期:2007-04-25

Enzymatic browning is a chemical process which occurs in fruits and vegetables by the enzyme polyphenoloxidase, which results in brown pigments. Enzymatic browning can be observed in fruits (apricots, pears, bananas, grapes), vegetables (potatoes, mushrooms, lettuce) and also in seafood (shrimps, spiny lobsters and crabs).

Enzymatic browning is detrimental to quality, particularly in post-harvest storage of fresh fruits, juices and some shellfish. Enzymatic browning may be responsible for up to 50% of all losses during fruit and vegetables production.

On the other hand enzymatic browning is essential for the colour and taste of tea, coffee and chocolate.

  • Polyphenols
  • Polyphenoloxidase
  • Prevention

Polyphenols – main components in enzymatic browning

Polyphenols, also called phenolic compounds, are group of chemical substances present in plants (fruits, vegetables) which play an important role during enzymatic browning, because they are substrates for the browning-enzymes.

Phenolic compounds are responsible for the colour of many plants, such as apples, they are part of the taste and flavour of beverages (apple juice, tea), and are important anti-oxidants in plants.

Polyphenols are normally complex organic substances, which contain more than one phenol group (carbolic acid):

 


Structure 1: Phenol

 

 


Structure 2: Theaflavin, a polyphenol in tea

 

Polyphenols can be divided into many different sub categories, such as anthocyans (colours in fruits), flavonoids (catechins, tannins in tea and wine) and non-flavonoids components (gallic acid in tea leaves). Flavonoids are formed in plants from the aromatic amino acids phenylalanine and tyrosine.

 


The colour of apples is due to polyphenols

 

During food processing and storage many polyphenols are unstable due to the fact that they undergo chemical and biochemical reactions. The most important is enzymatic oxidation causing browning of vegetables, fruits. This reaction mostly occurs after cutting or other mechanical treatment of product due to breaking cells.

Table 1 : An overview of known polyphenols involved in browning

 

Source

Phenolic substrates

Apple

chlorogenic acid (flesh), catechol, catechin (peel), caffeic acid, 3,4-dihydroxyphenylalanine (DOPA), 3,4-dihydroxy benzoic acid, p-cresol, 4-methyl catechol, leucocyanidin, p-coumaric acid, flavonol glycosides

Apricot

isochlorogenic acid, caffeic acid, 4-methyl catechol, chlorogenic acid, catechin, epicatechin, pyrogallol, catechol, flavonols, p-coumaric acid derivatives

Avocado

4-methyl catechol, dopamine, pyrogallol, catechol, chlorogenic acid, caffeic acid, DOPA

Banana

3,4-dihydroxyphenylethylamine (Dopamine), leucodelphinidin, leucocyanidin

Cacao

catechins, leucoanthocyanidins, anthocyanins, complex tannins

Coffee beans

chlorogenic acid, caffeic acid

Eggplant

chlorogenic acid, caffeic acid, coumaric acid, cinnamic acid derivatives

Grape

catechin, chlorogenic acid, catechol, caffeic acid, DOPA, tannins, flavonols, protocatechuic acid, resorcinol, hydroquinone, phenol

Lettuce

tyrosine, caffeic acid, chlorogenic acid derivatives

Lobster

tyrosine

Mango

dopamine-HCl, 4-methyl catechol, caffeic acid, catechol, catechin, chlorogenic acid, tyrosine, DOPA, p-cresol

Mushroom

tyrosine, catechol, DOPA, dopamine, adrenaline, noradrenaline

Peach

chlorogenic acid, pyrogallol, 4-methyl catechol, catechol, caffeic acid, gallic acid, catechin, dopamine

Pear

chlorogenic acid, catechol, catechin, caffeic acid, DOPA, 3,4-dihydroxy benzoic acid, p-cresol

Plum

chlorogenic acid, catechin, caffeic acid, catechol, DOPA

Potato

chlorogenic acid, caffeic acid, catechol, DOPA, p-cresol, p-hydroxyphenyl propionic acid, p-hydroxyphenyl pyruvic acid, m-cresol

Shrimp

tyrosine

Sweet potato

chlorogenic acid, caffeic acid, caffeylamide

Tea

flavanols, catechins, tannins, cinnamic acid derivatives

Polyphenoloxidase (PPO, phenolase)

Polyphenoloxidases are a class of enzymes that were first discovered in mushrooms and are widely distributed in nature. They appear to reside in the plastids and chloroplasts of plants, although freely existing in the cytoplasm of senescing or ripening plants. Polyphenoloxidase is thought to play an important role in the resistance of plants to microbial and viral infections and to adverse climatic conditions.

Polyphenoloxidase also occurs in animals and is thought to increase disease resistance in insects and crustaceans.

In the presence of oxygen from air, the enzyme catalyzes the first steps in the biochemical conversion of phenolics to produce quinones, which undergo further polymerization to yield dark, insoluble polymers referred to as melanins.

These melanins form barriers and have antimicrobial properties which prevent the spread of infection or bruising in plant tissues. Plants, which exhibit comparably high resistance to climatic stress, have been shown to possess relatively higher polyphenoloxidase levels than susceptible varieties.

An example of the formation of melanins from a simple polyphenol, tyrosine, is shown in the figure below:

 


Structure 3 : Formation of melanins from tyrosine

 

Polyphenoloxidase catalyses two basic reactions: hydroxylation and oxidation. Both reactions utilize molecular oxygen (air) as a co-substrate. The reaction is not only dependent on the presence of air, but also on the pH (acidity). The reaction does not occur at acid (pH <5) or alkaline (pH >8) conditions.

Prevention of enzymatic browning

The control of browning is one of the most important issues in thefood industry, as colour is a significant attribute of food which influences consumer decision and brown foods (especially fruits) are seen as spoiled.

Several methods can be applied to avoid enzymatic browning, based on inactivating the enzyme (heat) or by removing essential components (most often oxygen) from the product.

Blanching

Blanching is a short heat treatment to destroy or inactivate enzymes before freezing of products (mainly vegetables). Enzyme activity may discolour or toughen vegetables during freezing, which results in quality loss. Blanching brightens the colour, softens the texture, but has little effect on nutrient content or flavour as it is a relatively short process.

The blanching temperature depends on the type of enzyme which occurs in the product, but is generally between 70 and 100 °C, sometimes higher when more resistant enzymes are to be inactivated. Table 2 below gives an indication of the temperature needed to inactivate some important enzymes.

 

Table 2 : Inactivation temperatures of some enzymes

 

enzyme

effect

inactivation temp.
° C

Lipolityc acyl hydrolase

rancidity

~ 75

Lipoxygenase

rancidity

~ 80

Polyphenoloxidase

browning

~100

Peroxidase

deterioration

~135

Types of blanching:

  • blanching in steam/boiling water;

    Steam or boiling water blanching is a type of heat treatment for controlling enzymatic browning in canned or frozen fruits and vegetables. It is scalding the vegetables or food in water or steam for a short period of time. The steam blanching is 1.5 times longer than boiling water blanching.

  • microwave blanching;

    Microwave blanching may not be effective, since research shows that some enzymes may not be inactivated. This could result in off-flavours and loss of texture and colour.

Refrigeration

Refrigeration and chilling are used to prevent spoilage of vegetables and fruits during distribution and retailing. Chilling is applied often for broccoli, berries, spinach, peas, bananas, mangoes, avocados, tomatoes. At temperatures below 7 °C the polyphenoloxidase enzyme activity is inhibited, but the enzyme is not inactivated. Therefore the temperature should be well controlled.

Freezing

Like refrigeration, freezing inhibits, but not inactivates the enzyme. After thawing, the enzyme activity will resume.

Change pH

The enzyme activity is pH dependent. Lowering of the pH to 4.0 by the addition of citric, ascorbic or other acids inhibits the enzyme activity. During home-preparation of vegetables or fruits lemon juice or vinegar is often sprinkled on the fruit to prevent browning.

Dehydratation

Dehydratation is caused by the removing water molecules from the product. The PPO enzyme needs sufficient water to be active. By drying the enzyme is inhibited, but not destroyed.

To avoid flavour and quality loss, dehydration should not involve heat.

Common methods for dehydration are:

  • Freezing-drying when moisture is removed by sublimation (the change from solid to gas). Products are frozen and slowly dehydrated under vacuum.
  • Lowering water activity by adding water-binding chemicals. The most commonly used substances are salt (sodium chloride), sucrose, and other sugars, glycerol, propylene glycol and syrups or honey.

Irradiation

Irradiation, or as it is sometimes called "cold pasteurization", is a process in which food is submitted to ionized radiation in order to kill bacteria and reduce the enzyme activity. Irradiation is often applied in meats, seafood, fruits, vegetables, and cereal grains for long-term preservation.

Several types of irradiation methods are used in food processing: gamma rays, X-rays and accelerated electrons (electron beams).

Disadvantages of radiation are loss of nutrients and (low) consumer acceptance. Irradiation is thus rarely used.

High pressure treatment

High pressure treatment also called High Pressure Processing (HPP) is a technique of food processing where food is subjected to elevated pressures (500-700 atmosphere) to achieve microbial and enzyme inactivation.

High pressure processing causes minimal changes in foods. Compared to thermal processing, HPP results in foods with fresher taste, and better appearance, texture and nutrition. High pressure processing without heat eliminates thermally induced cooked off-flavours. The technology is especially beneficial for heat-sensitive products, but still very expensive.

Addition of inhibitors

Inhibitions can act in three ways:

  1. Inactivation towards the enzyme (acting directly on the enzyme)
  2. Inactivation towards substrate (removing the substrate like oxygen or phenolic compounds)
  3. Inactivation towards the product (changing the product composition)

Large amount of inhibitors are applied in food processing depending on the type of product and process. The most important inhibitors are shown in table 3.

 

Table 3 : Inhibitors of enzymatic browning

 

Category

Example of inhibitor

Mode of action

Reducing agents

sulphiting agents
ascorbic acid and analogs
cysteine
glutathione

removal of oxygen

Chelating agents

phosphates
EDTA
organic acids

removal of metals (most PPO enzymes contain metal atoms)

Acidulants

citric acid
phosphoric acid

reducing pH

Enzyme inhibitors

aromatic carboxylic acids
peptides
substituted resorcinols

react with enzymes

Ultrafiltration

Ultrafiltration is a membrane separation process, driven by a pressure gradient. The membrane separates liquid components according to their size and structure. In the food industry this technique is for example applied for white wine and fruit juices. Ultrafiltration is able to remove larger molecules like polyphenoloxidase, but not lower-molecular-weight components like polyphenols.

Ultrasonication

Ultrasonication is an advanced method to inactivate enzymes. Ultrasonic sound waves are able to destroy large molecules by liberating highly reactive radicals from water. It is not yet applied on a large scale.

Treatment with supercritical carbon dioxide (SC-CO2)

Supercritical carbon dioxide (fluid carbon dioxide at high pressure) treatment is mostly applied to destroying micro-organisms but can also be applied for enzyme inactivation, especially for inactivation of PPO in shrimps, lobsters and potatoes. Inactivation of the enzyme is a result of a decrease in pH caused by production of carbonic acid from carbon dioxide.

Main source : http://www.fao.org/AG/ags/agsi/ENZYMEFINAL/Enzymatic%20Browning.htm

更多翻譯詳細(xì)信息請(qǐng)點(diǎn)擊:http://www.trans1.cn
 
[ 網(wǎng)刊訂閱 ]  [ 專業(yè)英語搜索 ]  [ ]  [ 告訴好友 ]  [ 打印本文 ]  [ 關(guān)閉窗口 ] [ 返回頂部 ]
分享:

 

 
推薦圖文
推薦專業(yè)英語
點(diǎn)擊排行
 
 
Processed in 0.171 second(s), 17 queries, Memory 0.92 M
主站蜘蛛池模板: 日韩国产精品久久|黄=a在线|日韩视频久久|欧美亚洲日韩国产人成在线播放|超碰成人在线免费观看|欧美大屁股BBBBXXXX | 免费线上=av|成人欧美精品一区二区|色人阁网站|欧美精品一区二区免费视频|日韩综合色|国产黄色精品视频 | 奇米影视超碰在线|亚洲第一中文字幕|欧美精品片|欧美日韩精品网站|亚洲熟妇色XXXXX欧美老妇Y|正在播放国产真实哭都没用 | 日本三不卡|17c在线观看|亚洲中文久久精品无码照片|午夜精品久久久久久久96蜜桃|四虎精品成人影院在线观看|国产卡一卡二卡三无线乱码新区 | 亚洲精品一二三|一本色道久久综合狠狠躁邻居|国产精品乱码一二三区的特点|国产粉嫩高中无套进入|亚洲欧美日韩愉拍自拍|2017男人天堂手机在线 | 羞羞涩涩网站|亚洲高清免费看|色爱天堂|国产一级无码片在线观看免费|91=av视频观看|推川悠里在线观看=av影片 | 中文字幕高清在线观看|中文字幕一区二区三区门四区五区|中文字幕久久999及|国产亚洲日韩=aV在线播放不卡|精品国产免费看|亚洲tv在线 | 国产精品久久久久毛片|成年视频免费|未满岁18禁止在线WWW|鲁鲁鲁爽爽爽在线视频观看|国产视频一视频二|国产精品卡一 | 97超碰成人在线|欧美精品一区二区久久婷婷|在线观看免费人成视频播放|久久福利=av|精品一区不卡|久久水蜜桃视频 | 一本久道在线|#NAME?|成人在线www|精品国产一区二区三区久久影院|精品日韩=av高清一区二区三区|chinese乱国产伦video | 亚洲精品毛片一区二区|在线理论片|精品久久久无码中文字幕边打电话|久久久久久久|亚洲中文字幕无码第一区|亚洲欧美偷自乱图片 | 无码免费婬=aV片在线观看|免费黄色小视频在线观看|eeuss鲁丝片=aV无码|国产精品videossexohd|亚洲欧美成人一区二区在线|久久www免费人成网站 | #NAME?|欧美成人免费网站|亚洲成人天堂|日本一级视频在线观看|VR欧美乱强伦XXXXX|国产国语对白露脸正在播放 | 国产一区二区在线精品|久久久蜜桃=av|在线观看超碰|国内成人精品|髙清视频播放在线观看|中文国产字幕在线不卡 | 国产suv一区二区|#NAME?|日韩精品网|亚洲国产第一|#NAME?|色中色=av | 日本久久99成人网站|99视频在线免费看|亚洲一区成人在线观看|青草福利在线|中文字幕无线码中文字幕免费|亚洲视频h | 国产毛片久久久久久国产毛片|日韩在线免费观看中文字幕|久久sp|91精品国产色综合久久久浪潮|天天躁狠狠躁夜躁2020挡不住|日本=a视频在线观看 久久精品九九热无码免贵|日本=aⅴ精品一区二区三区|亚洲国产精品一区二区成人片|国产精品91久久|久草=av在线播放|亚洲在线www | 成本人片在线观看免费网站|成年人视频网站在线|夜趣福利视频|免费观看的=av在线播放|亚洲欧美偷国产日韩|四虎.com | 东京热TOKYO综合久久精品|99ri=av国产精品|欧美日本韩国一区二区三区|色综合久|麻豆精产国品一二三产区|97视频在线观看免费 | 久久精品国产2020|在线国产99|中文字幕视频一区|精品免费久久久|欧美性XXXX丰满极品少妞|欧美精品1区2区 | 汉服女装齐胸襦裙被c到喷水|h=aodi=aoc=ao这里只有精品视频|国产精华=av午夜在线观看免费|久久美女免费视频|www.91免费视频|#NAME? | 久久亚色|久99久精品免费视频热|欧美人伦禁忌DVD放荡欲情|幻女free性俄罗斯毛片|国产精品一区二区三区免费观看|亚洲精品乱码久久久久久中文字幕 | 亚洲精品久久久久一区二区|啊灬啊灬啊灬快灬高潮了视频网站|国产妇女野外牲一级毛片|两个人的房间高清在线观看|国产chinese男男G=aYG=aY视频网站|日本=aⅴ毛片成人偷拍 | 国产毛片久久久久久国产毛片|日韩在线免费观看中文字幕|久久sp|91精品国产色综合久久久浪潮|天天躁狠狠躁夜躁2020挡不住|日本=a视频在线观看 久久精品九九热无码免贵|日本=aⅴ精品一区二区三区|亚洲国产精品一区二区成人片|国产精品91久久|久草=av在线播放|亚洲在线www | 欧美一区三区在线观看|中国黄色一及片|国产特黄色片|国产精华液一线二线三线|内射合集对白在线|日本免费无码XXXXX视频 | wwww.黄|久久久国产99久久国产久一|欧美经典一区|免费高清在线视频观看|中文字幕99|性按摩xxxx | 精品久久久久久777米琪桃花|蜜芽亚洲=aV无码精品色午夜|成人碰碰视频|99国产精品久久久久老师|内地级=a艳片高清免费播放|久久久久爽爽爽爽一区老女人 | 日韩=av在线中文|三年片在线观看大全中国|日韩视频在线观看中文字幕|91在线看免费|免费人成在线观看视频无码|一个人看的视频www在线观看 | 久久久综合九色综合88|#NAME?|韩国激情3小时14分合集|免费国产美女视频永久免费|国产精品毛片大码女人|草逼视频观看 | 国产极品粉嫩馒头一线天=av|日韩在线观看|国产第一毛片|少妇又紧又粗又硬又爽视频|欧美人与动zozo|#NAME? | 天天看片导航|又粗又猛又黄又爽无遮挡|人妻无码专区一区二区三区|国产l精品国产亚洲区久久|少妇被又大又粗猛烈进出视频|国产精品夜色一区二区三区 | 天天干少妇|中文字幕在线亚洲日韩6页|v片免费在线观看|国产人妻人伦=aV|日本老妇和子乱视频在线观看|少妇又色又紧又爽又高潮 | 青青草免费在线视频播放|欧美国产一区二区三区|久久综合站|国产=aV视频一区二区|国产精品色在线免费|大片免免费观看视频播放器在线观看 | 日韩国产精品久久|黄=a在线|日韩视频久久|欧美亚洲日韩国产人成在线播放|超碰成人在线免费观看|欧美大屁股BBBBXXXX | 国产伦精品一区二区三区免费|天天躁日日躁狼狼超碰97|综合亚洲视频|欧美性生交XXXXX无码小说|成年人免费网站在线观看|96国产精品 | 中文字幕亚洲码在线|国变精品美女久久久久=av爽|一区在线免费观看|精品91久久|国产精品成人=a片在线播放免费|小12萝裸乳无码 | 美女视频黄频大全视频网站|免费国产乱码一二三区|the=av免费观看网址|国产女同一区二区|亚洲无吗在线观看|国产综合精品 | 国产在线短视频|最近免费中文字幕mv免费高清|四虎国产精品一区二区|毛片韩国|99re6这里只有精品视频在线观看|青春草在线 | 国产人妖在线|国产午夜福利在线播放|亚洲国产成人精品久久久国产成人|高柳の肉嫁动漫在线播放|日韩久久精品一区二区三区|精品偷自拍另类在线观看 | 久久久91视频|99三级|水蜜桃视频在线免费观看|黄色国产网站在线观看|含羞草家庭影院|久久久欧美国产精品人妻噜噜 | 天天干在线播放|成人国内精品视频在线观看|最近2019年中文字幕大全|亚洲一区免费在线观看|久久青青草原亚洲=aV无码麻豆|三区四区 |